
Using Dedicated and Opportunistic Networks in Synergy for a Cost-effective
Distributed Stream Processing Platform

Shah Asaduzzaman and Muthucumaru Maheswaran
Advanced Networking Research Lab

School of Computer Science
McGill University

Montreal, QC H3A 2A7, Canada
{asad,maheswar}@cs.mcgill.ca

Abstract

This paper investigates how a hybrid hosting platform
made from dedicated and opportunistic resources can be
used to host data stream processing applications. We pro-
pose a system model for the hybrid hosting platform and
develop resource management algorithms that are neces-
sary to coordinate the allocation of the two classes of re-
sources to the stream processing tasks. We used extensive
simulations driven by traces styled from realistic system
observations for evaluating the proposed resource alloca-
tion heuristics. The results show that with proper man-
agement, the synergy of dedicated and opportunistic re-
sources yields considerably higher service throughput and
thus, higher return on investment over expensive dedicated
resources.

1 Introduction

Many applications on the Internet are creating, manip-
ulating, and consuming data at an astonishing rate. Data
stream processing is one such class of applications where
data is streamed through a network of servers that oper-
ate on the data as they pass through them. Depending
on the application, data streams can have complex topolo-
gies with multiple sources or multiple sinks. Examples of
data stream processing tasks happen in many areas includ-
ing distributed databases, sensor networks, and multime-
dia computing. Some examples include: (i) multimedia
streams of real-time events that are transcoded into differ-
ent formats, (ii) insertion of information tickers into multi-
media streams, (iii) real-time queries on computer network
monitoring data for malicious activitiy detection, and (iv)
function computation over data feeds obtained from sensor
networks.
One of the salient characteristics of this class of applica-

tions is the demanding compute and network resource re-
quirements. In previous works, various researchers have
examined the problem of mapping data stream process-
ing tasks to distributed resource clusters. Due to their
stringent quality-of-service requirements, these applica-
tions are mapped onto dedicated servers and networks so
that the loading conditions on the resources can be con-
trolled to provide the expected service rates. While dedi-
cated server capacities are affordable, dedicated networks
over wide-area installations remain costly. In this paper,
we explore a novel approach where the network that inter-
connects server resources can include dedicated links and
the public network. Our research explores how such a hy-
brid (called as bi-modal in this paper) network can be best
used for data stream processing tasks. We develop various
heuristic solutions for the resource management problem
in this hybrid scenario and thoroughly evaluate the perfor-
mance under representative settings.
This paper extends some of our previous work [3, 2]

on bi-modal compute platforms where dedicated resource
pools were augmented with opportunistically harvested
public resources to increase service level compliances and
the utilization of dedicated resources. Using data stream
processing tasks as a concrete example, this paper demon-
strates the benefit of using bi-modal network infrastruc-
tures for compute- and network-intensive applications. In
particular, this paper makes the following contributions to
this important resource management problem:

• Show that a bi-modal network can improve the utiliza-
tion of dedicated resources such as servers and net-
work links.

• Show that bi-modal network can improve the com-
pliance levels of service contracts while admitting
large workloads with minimal elongations in task du-
rations.

• Show the importance of dynamic re-scheduling to

cope with changing loading conditions on the public
network.

In Section 2 we present the system model for the data
stream processing and the associated resource mapping
problem. Section 3 discusses two types of resource map-
ping algorithms: an initial resource allocation and a dy-
namic re-scheduling algorithm. Section 4 examines the re-
sults from the extensive simulation studies we carried out
to evaluate the algorithms. Section 5 reviews related liter-
ature.

2 System Model and Assumptions

2.1 Scenario

Consider a video stream task that can progress through
several service components such as encoding, embedding
of real-time weather or financial tickers and transcoding
into different formats. Each of the individual services may
be served by different servers in distributed locations. Af-
ter being processed through all the steps, the streammay be
delivered to a specific user. Figure 1 illustrates a scenario
of a stream processing platform containing five servers
(dedicated machines). Each server may serve multiple dif-
ferent service components as well as data sources. The
servers are connected to the public Interent. In addition,
some of the server pairs are conected using dedicated links.
The example stream processing task shown in the figure re-
quests a data stream from data source d2 to be processed
through services a2, a3, a4 and a5, and to be delivered to
a host in the network N1. This task may be served by the
serversS4 (serving d2), S3 (serving a2), S2 (serving a3 and
a4). Either dedicated link or public network may be used
to transmit the data stream between any two consecutive
servers.

2.2 Architecture

The stream processing platform can be viewed to be
composed of the layers showed n Figure 2, with user appli-
cations at the top. The applications are composed of data
sources and several service components hosted by differ-
erent servers. Therefore, the service components constitue
themiddle layer. At the bottom layer, the resourcemanage-
ment system (RMS) of the platform manages the available
server and network resources to allow seamless execution
of the service components. The main focus of this paper
is to design and analyze the algorithms for various func-
tionalities of the RMS layer. The RMS is responsible for
mapping of the task requests on available resources and dy-
namically adapting the resource allocations in response to
various loading conditions. The three components of RMS
cooperate to achieve these functionalities. A detailed dis-
cussion on the RMS is presented in Section 3. RMS uses

the local operating system API to control the underlying
resources. Hence host OS and physical resources lie at the
bottom of the layered architecture.

2.3 Task Specification

The stream processing tasks are launched by users in the
form requests for delivering some data stream from an ori-
gin to the user after several processing steps. In addition to
the source, the request specifies the destination node, total
volume of data to be extracted from the source, the series of
the application types needed for processing of the stream
and a required delivery data rate R. All these specifica-
tions forms the service level agreement (SLA) between the
user launching the task and the platform. When the plat-
form accepts the task after necessary resource allocation,
it is responsible to meeting the constraints specified in the
SLA.
Because each service type has its characteristic resource

usage factor and bandwidth shrinkage factor, it is easy to
calculate the CPU and link resource requirements for each
hop of the stream. Given that many servers may serve any
particular type of service component, it is the responsibil-
ity of the platform to map the requested components on ap-
propriate nodes subject to fulfillment of the capacity con-
straints.
To monitor the compliance with the required specifica-

tion, the SLA includes a monitoring time window T across
which the delivery rate is measured for conformance. If
the actual delivery volume in an measurement interval is
V , the platform is compliant if V >= RT and the plat-
form is entitled to full price of the service. Otherwise, the
platform is penalized at a rate proportional to RT − V

3 Decentralized Management of Server and
Network Resources

The resource management system (RMS) of the stream
processing platform has a completely distributed architec-
ture, with an RMS agent in each of the server nodes. The
agent on a particular server node is responsible for man-
aging the computing resources that belongs to and the
network links that originate from that node. Each RMS
agent has three components – i) map manager ii) reserva-
tion manager iii) dynamic scheduler. The map managers
of different RMS agents collaboratively maps a requested
stream processing task specification to the available server
and network resources. The reservation managers collabo-
rate to reserve necessary resources based on one of the sev-
eral alternative mappings generated by the map managers.
The details of the mapping and reservation protocols and
the underlying distributed algorithm to compute the opti-
mal mapping is discussed in Section 3.1.

[a2, a3]

Applications
served

Application/
Data Server

Users
(N1) Internet/

Public IP network

Dedicated links

[a2, a3,a4, a5]
[a2, a4]

[a1, d1]
[a3, d2]

S1

S2

S3

S4

S5

Sample Task: d2 a2 a3 a4 a5 N1

N2

N3

N4

N5

Figure 1. Example scenario of a data stream processing
platform with five servers interconnected by the public In-
ternet and dedicated links.

Host OS

RMS

Component Services

User application

Physical Resources

Map
Manager

Resrvation
Manager

Dynamic
Scheduler

Figure 2. Layered architec-
ture

The rate at which the data stream is processed and de-
livered to the target node does not remain constant even
after acquiring the required amount of node and link re-
sources successfully. Because, although the bandwidth of
a dedicated link can be deterministically allocated and re-
served by the source end of the link, when two servers
are connected using public Internet paths, the end-to-end
bandwidth cannot be deterministically allocated. To ob-
tain maximum possible compliance with the service agree-
ments in presence of such variability in the public network
connections, the dedicated links and the public links need
to be dynamically re-allocated based on the needs of the
tasks. The dynamic scheduler handles this periodic re-
allocation of the different types of links. The details of the
periodic re-allocation algorithm is presented in Section 3.2.

3.1 Mapping and Reservation

A user of the distributed platform uses one of the server
nodes as a portal to launch its stream processing task. The
task specification submitted to the portal contains the ad-
dress of data stream source and an ordered list of the ser-
vice components that should process the data stream. By
default the delivery point (destination) of the stream is the
user’s portal node, but any other node can be specified
as well. The specification also includes the required rate
of data delivery, time window for monitoring the rate and
pricing for each byte of data delivered.
After receiving the specification from user, the portal

node engages the map manager component of its RMS

agent to initiate the mapping of the specified requirements
on the network. Through message passing among the map
managers in different server nodes, the distributed map-
ping algorithm results in a set of feasible maps at the map
manager of the data-source node. Each of the maps de-
fines a path from the data source node to the delivery node
through the server nodes that serve necessary service com-
ponents. The best among the available feasible maps ac-
cording to a certain cost metric is chosen and the reser-
vation manager initiates the reservation of server and link
resources.

The reservation protocol basically sends the reservation
probe along the actual network path found in the map. The
reservation manager in each server node along the path
tries to allocate the node and link resources prescribed by
the map. If the allocation is successful, it forwards reser-
vation probe to the next server node in the map. In case the
node finds that the required amount of resource is no longer
available, it sends a reservation rollback message to the
previous node in the path. Receiving a rollback message,
the reservation manager releases the resources reserved for
that particular task and forwards the rollback to the pre-
vious node in the map. Once the rollback message is re-
ceived by the source node, it re-initiates the reservation on
the next map in the priority queue. Once a successful reser-
vation probe reaches the destination node, a confirmation
is sent back to the data source node along the path and the
data streaming begins.

3.1.1 Distributed Algorithm for Mapping

The distributed mapping of the task specification on avail-
able resources is collaboratively performed by the map
managers by gradually expanding the maps to neighbors in
the server network. Receiving the task specification from
the user, the portal server computes the amount of CPU
and communication resources necessary for each compo-
nent services. This is possible because each service type
has well defined bandwidth shrinkage factor (ratio of out-
put to input data rate) and CPU usage factor (CPU usage
per input byte). The portal server then composes the ini-
tial map message, mapping the data delivery point on the
desired server node and send the message to that server.
Upon receipt of a map message, the map manager of each
node invokes the ProcessMap algorithm (Algorithm 1).

Algorithm 1 ProcessMap(u, m, T)
1: Map messagem containing the mapping of first j ser-
vices on a series of server nodes is received by node
u. j is called the prefix-length of m. T denotes the
ordered set of services in the task

2: if u is the data-source node and all the services except
the data source is mapped inm then

3: m is a feasible map
4: else
5: for x = 0 to |T |− j − 1 do
6: mx = map found by extending next x services in

T on u
7: for each neighbor v of u that is not already in m

do
8: if available bandwidth in (u, v) link can sup-

port the bandwidth need for the service hop
(j + x, j + x + 1) then

9: Sendmx to v
10: end if
11: end for
12: end for
13: end if

The distributed algorithm is based on a centralized algo-
rithm, details of which including correctness and complex-
ity analysis can be found at [1, 4]. Each node receiving the
map message extend the map by mapping the next service
on itself if the service is available and the CPU capacity
allows, or acts as a forwarding node. The extended map
is sent as a new map message to the neighboring servers
if the available bandwidth permits. Cycles are avoided in
these extensions. Eventually, the data source node receives
a completemap of the task and initiates the reservation pro-
tocol. It follows from the correctness of the centralized al-
gorithm [1] that the distributed mapping completes after at
most N − 1 ProcessMap invocation by each node in the
network (N is the total number of nodes). The algorithm
terminates after all the outstanding ProcessMap have been

completed. Since cycles are avoided during extension, an
initial mapping may be extended to at most N − 1 hops.
Thus there will be a finite number of ProcessMap invoca-
tion and the algorithm will terminate after a finite amount
of time. After completion, the algorithm results in the set
of all feasible mappings at the data-source node. Based
on some desired cost-metric, the lowest cost mapping can
then be selected.
The notion of neighborhood of a server node is straight-

forward when there is only dedicated links interconnecting
the nodes. In case overlay links through the public Internet
is allowed, each node can potentially connect to all other
nodes in the network. However, it is only necessary to ex-
tend the maps to the nodes that serve the next service com-
ponent in the task. We assume that an underlying gossip
like algorithm disseminate the presence of services in each
server across the network. Thus for each service type, each
node has knowledge of a uniform subset of the nodes that
hosts that service.

3.1.2 Heuristic Approximations

As the mapping problem is NP-complete [4], computa-
tional complexity of both the centralized and the dis-
tributed path mapping algorithm grows exponentially with
the problem size. Therefore, for practical deployment, we
need some heuristic that produces good approximation to
the optimal result. Here we discuss three possible heuris-
tics that modifies the original algorithm to reduce compu-
tational, messaging and memory complexity.

LeastCostMap

Onemajor source of growth in complexity of the algorithm
is the exponential growth of the set of partial maps ex-
tended by each node. In the LeastCostMap heuristic, each
node maintains a table of the least cost map observed so
far for partial maps of each possible prefix-length. If a new
map is received, the cost of the new map is compared with
that of the already stored one, and the map with higher
cost is discarded. It is quite possible that the lower cost
map that is selected will not eventually lead to a feasible
solution, rather the dropped map would. Thus there may
be no feasible mapping found when such map exists, or
the optimal map may be missed.

AnnealedLeastCostMap

One way of trading off between optimality and complexity
of the LeastCostMap heuristic is to apply a simulated an-
nealing approach to decide whether to discard a higher cost
partial map from the set in presence of a lower cost map.
As the temperature of the process anneals, i.e. at the later
iterations, the probability of keeping a non-minimal partial
solution will decrease. Definitely this approach increases

the computation and message complexity. However, this
allows some of the non-minimal partial solutions to grow
and possibly lead to a better complete solution.

RandomNeighbor

Another way of restricting the message complexity is to
extend any partial map to a randomly chosen subset of k
neighbors instead of expanding to all of them. Higher val-
ues of k increases the chance of getting the optimal solu-
tion. The RandomNeighbor heuristic with k = 1 did not
produce results as good as LeastCostMap, although num-
ber of messages were reduced dramatically. Further inves-
tigation need to be done to determine a suitable value of
k.
We compared the three heuristics in terms of quality of

solution and message complexity. Because the optimal so-
lution is hard to compute (NP-complete), we devised a re-
laxed version of the problem by relaxing the bandwidth
constraints of the links. The solution to this relaxed prob-
lem can be computed in polynomial time. Any feasible
solution for the actual problem will be feasible for the re-
laxed problem, thus the optimal solution to the relaxed
problems gives a lower bound of the optimal cost. We com-
puted the ratio of the cost of heuristic generated solutions
to this lower bound cost. To assess the cost of executing the
heuristics, we counted the total number of map-extension
messages exchanged among the nodes. Because arrival of
each map message invokes the processing algorithm on the
receiving node, the total computational cost is proportional
to the number of map messages.
Figure 3(a) shows that the heuristic derived solutions are

fairly close to the lower bound of optimal solutions. We
can observe that the LeastCostMap and theAnnealedLeast-
CostMap heuristics perform well and get solutions that are
very close to optimal solutions. We can see that the Ran-
domNeighbor heuristic does not produce good solutions,
because number of feasible ways to expand the partial
maps narrows down very quickly here. In terms of cost
of computation of the heuristics, we can observe in Fig-
ure 3(b) that number of map-extension messages to com-
plete mapping of a single composition is much higher in
the AnnealedLeastCostMap heuristic than the other two
heuristics. These experiments show the LeastCostMap is
the best among the three heuristics. We implemented the
LeastCostMap heuristic in the map manager.

3.1.3 Cost Metric

To devise a cost metric for choosing the best mapping
among alternative feasible maps, we considered the fol-
lowing two factors - balancing the service workload among
the servers and minimizing the uncertainty of using pub-
lic network links where a dedicated link is available. The
load-balance factor for a map (or a partial map) is com-

 1

 1.5

 2

 2.5

 3

 3.5

 30 40 50 60 70 80 90 100 110 120

Ra
tio

 to
 th

e
op

tim
al

 c
os

t

Network size (nodes)

LeastCost
AnnealedLeastCost

RandomNeighbor

(a) Quality of solutions

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 4 6 8 10 12 14 16

M
es

sa
ge

 c
ou

nt

Components in a task

LeastCost
AnnealedLeastCost

RandomNeighbor

(b) Message overhead

Figure 3. Comparing three heuristics

puted as an average of the server load-factors (ratio of used
capacity to total capacity) for all the servers included in
the map, and is always a number between 0 and 1. A map
with lower load-balance factor spreads the components of
a task on different servers rather than putting all of them
into one, and chooses the under-utilized servers. In case
two maps have almost same load-balance factor, (do not
differ by more than 0.1 or 10%), then the one in which the
number of hops (links connecting the processing compo-
nents) assigned to dedicated links is higher is preferred. If
that is also same, the map in which less number of hops are
assigned to public network link is preferred.

3.2 Dynamic Re-allocation of Bi-modal
Links

To effectively manage concurrent resource allocation re-
quests and the variability in the flow-rate of the public net-
work links, we need a mechanism to adapt with the chang-
ing network conditions. In this section we present the func-
tional details of the dynamic scheduler component of the
RMS that handles the dynamic reallocations.
The scheduler agent in each node is invoked periodically

at regular intervals. The overall policy of the scheduler is
to prioritize among competing tasks for use of the network
links, based on their target data rate and offered price for
the data processing service. When the platform accepts a
task, the price of delivering each byte of data is specified

in the task specification. This price is apportioned to each
of the service components of the task, based on their pro-
cessing requirements. Accordingly, a server executing a
particular service will earn the apportioned price for each
byte of data it processes. Besides executing the compo-
nent services, servers may act as forwarding nodes for the
stream processing tasks.
The links that carry the stream between two data pro-

cessing servers can be of three different types – i) a direct
dedicated link, ii) a multi-hop dedicated link through one
or more forwarding nodes iii) an overlay link through the
public network. A mapping of a task may contain any com-
bination of these three types of links between the process-
ing nodes. Among them, the direct dedicated links are the
most preferred one, because they provide controlled and
stable data rate. A multi-hop dedicated link provides sim-
ilar control and stability, but it costs more because every
forwarding node will charge the sender node for their for-
warding task. This in turn reduces the revenue earned by
the processing node for its work. Therefore, the price spec-
ification limits the number of indirections possible for a
multi-hop link and a direct dedicated link is always pre-
ferred over a multi-hop link. The third possibility is hav-
ing an overlay link through the public IP network. Because
the sending node does not have any direct control over the
packet routing in the public network, the flow rate is vari-
able over such links. However, there is no additional per-
byte cost for sending data through the overlay links. So,
the nodes try to opportunistically use these links when ded-
icated links are overloaded or not available. Note that the
server nodes are dedicated computers and thus, the allo-
cated processing capacities to the task components do not
vary over time. Hence there is no need to re-allocate the
server resources after initial allocation.
At regular intervals when the scheduler is invoked, the

procedure presented in Algorithm 2 is executed. The algo-
rithm evaluates the fulfillment of processing rate require-
ment of each of the tasks being processed at the node, and
re-allocates the available links of three types between this
node and the node serving the next service component.
While prioritizing among competing tasks, the scheduler
tries to maximize the revenue earning of the server and
prefers the tasks marked with higher price per unit of pro-
cessing. On the other hand, the servers get penalized on the
revenue, if they do not deliver the processed stream at the
agreed upon rate. Therefore each server tries to fulfill the
rate requirements of each task as much as possible. Thus,
the task that requires more bandwidth to comply with its
target gets higher preference. Hence the scheduler com-
putes the priority of each task as a product of the appor-
tioned price and the data rate required in next scheduling
epoch.
To allocate the links, each node groups the tasks accord-

ing to their next hop server. For each next hop group, high-
est priority tasks get allocation from the direct dedicated

Algorithm 2 Link re-allocation algorithm
1: Invoked for each node u periodically
2: Group the tasks that are being processed in u by their
next hop server v

3: for Each group v do
4: Compute the priority of each flow competing for a

(u,v) link as -
5: priority = budget per byte of processed data * band-

width required to comply with the target rate
6: if any dedicated link (u,v) exists then
7: Assign the dedicated link to top priority flows un-

til all capacity is used
8: end if
9: Collect all the unassigned flows
10: end for
11: for All the remaining flows do
12: if The budget permits k-hop (u,v) dedicated link,

k > 1 then
13: Launch a probe search and reservemulti-hop ded-

icated path for the flow with maximum k hops
14: Assign public network bandwidth for the flow

temporarily
15: else
16: Assign public network bandwidth for the flow
17: end if
18: end for

link, if such link exist and capacity permits. The next prior
tasks are assigned multi-hop dedicated links. The maxi-
mum possible hops in such multi-hop links are restricted
by the apportioned price for that task, because there is ad-
ditional cost of forwarding at each hop and the processing
node would not like to spend for forwarding cost beyond
the amount of revenue it earns. The flows of the remaining
tasks from all the groups are allocated bandwidth from the
public overlay links.

4 Performance Evaluation and Discussion

4.1 Simulation Model

We constructed a simulation model of the distributed
stream processing plaform according to the architecture
and algorithms presented in Sections 2 and 3, respectively.
The model was build on Java based simulation engine
JiST [6].
Each of the servers in distributed locations are connected

to the public Internet. Although each server has a certain
uplink and downlink bandiwdth, the data rate over a con-
nection that goes through the public network faces tempo-
ral variation. We use the statistics presented by Wallerich
and Feldmann [15] to model the temporal variability of the
end-to-end capacity of a path through the public network.

From their data, the logarithm of the ratio of the observed
transient flow rate to the mean flow rate over long period is
almost a Normal distribution. In our simulations, all flows
on the public network are perturbed every 10 milliseconds
according to this model. With the allocated bandwidth as
the mean rate and the standard deviation of the log-ratio set
at 1, in 95% of the cases the observed bandwidth remains
between one fourth (2−2σ) and four time (22σ) of the al-
located or mean bandwidth. Bandwidth of each last-mile
connection (uplink and downlink) is randomly assigned
between 1Mbps and 2Mbps.

In addition to the public network links, the servers are
interconnected through dedicated links (which may be
leased lines or privately installed links). For the dedi-
cated network, we assume a preferential conectivity based
network growth model similar to the one proposed by
Barabasi et al [5]. The basic premise here is that when
a server attempts to establish a dedicated link, it does so
preferably with the most connected server. This eventually
results in a power law degree distribution in the network.
We assumed that server CPU capacity is proportional to
the number of dedicated links it has. The variety of ser-
vices that a server can host is also proportional to the node
degree or capacity. The dedicated links have much higher
bandwidth than the network links connecting a node to the
public network. Their bandwidths were randomly assigned
between 1 Mbps and 10 Mbps and the propagation delays
were assumed to be between 1 and 10 milliseconds. The
propagation delay of an end-to-end connection through the
public network was much higher and assumed to be be-
tween 10 and 100 milliseconds.

Unless otherwise mentioned, we assumed the patform
to have 100 server nodes and 99 dedicated links intercon-
necting them. There were 25 different types of services.
As the service variety is proportional to the node degree, a
node having d dedicated links was assumed to host 1 + d
different types of services (one added for public network
link). Server CPU capacity was set such that it can execute
k instances of each service concurrently, according to the
mean data delivery rate. We set k = 2. For the task work-
load, each task is assumed to have 10 service components,
randomly chosen from 25 different types of service. Mean
data delivery rate was 1Mbps and total amount of data to be
processed from the source was 100MB on average. Each
data point on the results shown below is an average of 100
observations from different experiments on randomly gen-
erated networks with specified parameters. For each exper-
iment, a synthetic workload trace containing 500 stream
processing tasks were generated. The task arrival process
is assumed to be Poisson, with the arrival rate varying ac-
cross the experiments. If not mentioned otherwise, the de-
fault arrival rate was 60 tasks per hour.

4.2 Benefits of Combining Opportunistic
and Dedicated Resources

We performed several sets of experiments to evaluate the
benefits of using bi-modal networks for stream processing
tasks. In the experiments, we compare three possible set-
tings – i) a network with the dedicated links only, ii) public
network only, and iii) a network that combines both.
First argument in favor of a bi-modal network for stream

processing is that combining the public network with
dedicated links, the system achieves much higher work
throughput at the same cost. To examine this, we fed sim-
ilar workload traces under same arrival rates to two sys-
tem set-ups, one with only dedicate link based networks
and the other using the combination of dedicated links and
public network. From Figure 4(b) we observe that for the
same workload, if the platform uses dedicated links only,
it needs more than 120 links to get 50% acceptance ratio,
whereas the same acceptance ratio can be obtained with
50 dedicated links only, if the public network is utilized in
conjunction. Similar evidence in Figure 4(a) shows that in-
clusion of the public network helps to achieve same overall
system throughput at much lower number of dedicated link
installations.
The next argument is that utilization of the privately de-

ployed expensive dedicated resources such as servers and
dedicated links is increased, if inexpensive public network
is used in conjunction. From Figure 4(c) we observe that
when a combination of dedicated links and the public net-
work is used, the server utilization is higher than the sum
of utilizations of cases using a single type of network links.
Figures 4(e) and 4(f) show another evidence of higher

return on investment. In Figure 4(e), we observe that the
utilization of dedicated links becomes consistently higher
across a wide range of loading scenarios if the public net-
work is used in combination. The lower utilization in case
of a dedicated link only network results from the fact that
the platform has rejected many task requests that would
have been feasible by the augmentation of the public re-
sources. Figure 4(f) shows the variation of utilization of
the dedicated links with the number of dedicated links. We
observe that the difference in utilization diminishes as the
number of installed links increases. This is because when
there is sufficient number of dedicated links to carry the
required traffic of all the tasks, the public resources are not
used at all, and the bi-modal system becomes equivalent to
a dedicated link only system. In both cases, utilization of
the links keeps decreasing when more and more links are
added because the workload is held constant.
The discussion above highlighted the benefits of using

public network towards improving the utilization of dedi-
cated server and link resources (i.e., increases in return on
investment). Next we investigate how the bi-modal net-
work helps the stream processing platform to improve the
compliance with the services contracts it has with indi-

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

Th
ro

ug
hp

ut
 (M

bp
s)

Number of links

dedicated + public
dedicated only

(a) Task Throughput

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300

Ac
ce

pt
 (%

)

Number of links

dedicated + public
dedicated only

(b) Task acceptance ratio

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 20 40 60 80 100 120 140 160 180 200

Ut
iliz

at
io

n
(%

)

Process arrival per hour

dedicated + public
dedicated only (sp. tree)

public links only

(c) Server utilization at different workload

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300

Ut
iliz

at
io

n
(%

)

Number of links

dedicated + public
dedicated only

(d) Server utilization vs dedicated links

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 20 40 60 80 100 120 140 160 180 200

Ut
iliz

at
io

n
(%

)

Process arrival per hour

dedicated + public
dedicated only (sp. tree)

public links only

(e) Link utilization at different workload

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 50 100 150 200 250 300

Ut
iliz

at
io

n
(%

)

Number of links

dedicated + public
dedicated only

(f) Link utilization vs number of dedicated links

 0

 10

 20

 30

 40

 50

 60

 20 40 60 80 100 120 140 160 180 200

De
via

tio
n

(%
)

Process arrival per hour

dedicated + public
dedicated only (sp. tree)

public links only

(g) SLA deviation at different workload

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300

De
via

tio
n

(%
)

Number of links

dedicated + public
dedicated only

(h) SLA deviation vs number of dedicated links

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 20 40 60 80 100 120 140 160 180 200

Ti
m

e
(m

in
ut

es
)

Process arrival per hour

dedicated + public
dedicated only (sp. tree)

public links only

(i) Elongation of task execution time

Figure 4. Comparing bi-modal and uni-modal networks

vidual tasks. We measure the compliance of the stream
processing platform as follows. Each task request speci-
fies a time window T that is used to monitor the delivery
rate. We measured the deviation from the required rate as∑
over all windows

B−B̂
B , where B is the desired rate and

B̂ is the observed rate of delivery. In Figure 4(g), we ob-
serve that use of dedicated links brings the percent devia-
tion down to between 10% and 20% from above 50%. In
this case the number of installed dedicated links was just
enough to make a spanning tree of the nodes, i.e. N − 1
links forN nodes. Note that deviation is counted on the ac-
cepted jobs only. So, even though for a dedicated link only
network, the deviation is almost zero, we have seen that
such network is unable to accept enough jobs to fully uti-
lize the resources. In Figure 4(h), we observe that the de-
viation in the bi-modal system gets closer to zero as more
and more dedicated links are added to the network. How-
ever, beyond certain number of links, (125 in this particular

experiment), the improvement is very marginal.
When we use a combination of dedicated and public

links, it is expected that the completion time of each task
will be slightly elongated compared to a system with only
dedicated links, due to the variability in the public network.
Nevertheless, using the combination contains the elonga-
tion to a small value, compared to the case where only
public network is available. In Figure 4(i), we observe a
10 − 20% increase in the execution time in the bi-modal
system, whereas execution time would be 200 − 300%
more in case of a public network only system.

4.3 Necessity of Periodic Re-Scheduling

Another important question in managing the bi-modal
stream processing platform is the importance of dynamic
re-allocation of network links. The main intuition behind
introducing dynamic re-allocation is that the flows that
goes through the public network suffer from the variability

 0

 2

 4

 6

 8

 10

 12

 20 40 60 80 100 120 140 160 180 200

Th
ro

ug
hp

ut
 (M

bp
s)

Process arrival per hour

with scheduling
no scheduling

(a) Throughput

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 20 40 60 80 100 120 140 160 180 200

Ut
iliz

at
io

n
(%

)

Process arrival per hour

with scheduling
no scheduling

(b) Utilization of dedicated links

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 20 40 60 80 100 120 140 160 180 200

De
via

tio
n

(%
)

Process arrival per hour

with scheduling
no scheduling

(c) Deviation from target rate

Figure 5. Effect of dynamic scheduling

and lag from the target rate, whereas the flows that uses
dedicated links all-through, do not lag from the target at
all. Dynamic scheduling introduces fairness across all the
tasks. So if link assignment is done dynamically, it is ex-
pected to improve the utilization of the resources and in-
crease the overall capacity of the system.
We fed the same workload to two system set-ups con-

taining combinations of dedicated links and public network
links. In one we disabled dynamic re-scheduling of links
and let the tasks complete with the initial assignment of
links and nodes. From Figures 5(a) we observe that overall
system throughput increases with dynamic scheduling, as
an indication of higher task acceptance ratio and higher uti-
lization of the system resources. Figure 5(b) demonstrates
that dynamic scheduling results in much higher utilization
of the dedicated links. CPU utilization remains unchanged
(not shown), because the dynamic re-allocation does not
alter the node assignments. Another rationale behind re-
allocations is to increase fairness and improve compliance
with the target delivery rate. Figure 5(c) shows that irre-
spective of workload, the dynamic scheduling decreases
the deviation from the specified target, having the same
number of dedicated links and same public network band-
width.

5 Related Work

Although there is a vast body of literature on resource
management in cluster, Grid or peer-to-peer hosting plat-
forms, there have been relatively a very few works that
proposes combined use of dedicated and public resources.
In [10], Kenyon et al. provided arguments based on math-
ematical analysis, that commercially valuable quality as-
sured services can be generated from harvested public
computing resources, if small amount of dedicated com-
puters can be augmented with them. With simple models
for available periods of harvested cycles, their work have
measured the amount of dedicated resources necessary to
achieve some stochastic quality assurance from the plat-
form. However, they did not study how a bi-modal plat-
form would perform in the presence of clients with dif-

ferent service level agreements and how to engineer the
scheduling policies to maximize the adherence to these
agreements.
Recently, in [7], Das et al. have proposed the use of ded-

icated streaming servers along with BitTorrent, to provide
streaming services with commercially valuable quality as-
surances while maintaining the self scaling property of Bit-
Torrent platform. With analytical models of BitTorrent
and dedicated content servers they have demonstrated how
guaranteed download time can be achieved through aug-
mentation of these platforms. However, their proposal does
not include actual protocols that can be used to achieve
these performance improvements.
Architectures and resource management schemes for

distributed stream processing platforms have been studied
by many research groups from distributed databases, sen-
sor networks, and multimedia streaming. In database and
sensor network research, the major focus was placing the
query operators to nodes inside the network that carries the
data stream from source to the viewer [13]. In multimedia
streaming problems, similar requirements arise when we
need to perform a series of on-line operations such as trans-
coding or embedding on one or more multimedia streams
and these services are provided by servers in distributed lo-
cations. In both cases, the main problem is to allocate the
node resources where certain processing need to be per-
formed along with the network bandwidths that will carry
the data stream through these nodes.
Finding the optimal solution to this resource allocation

problem is inherently complex. Several heuristics have
been proposed in the literature to obtain near-optimal so-
lutions. Recursive partitioning of the network of comput-
ing nodes have been proposed in [11] and [14] to map the
stream processing operators on a hierarchy of node-groups.
They have demonstrated that such distributed allocation of
resources for the query operators provides better response
time and better tolerance to network perturbations com-
pared to planning the mapping at a centralized location.
In [16] and [8], the service requirements for multi-step

processing of multimedia streams, defined in terms of ser-
vice composition graphs have been mapped to an overlay

network of servers after pruning the whole resource net-
work into a subset of compatible resources. The map-
ping is performed subject to some end-to-end quality con-
straints, but the CPU requirements for each individual ser-
vice component is not considered. Liang and Nahrstedt
in [12] have proposed solutions to the mapping problem
where both node capacity requirement and bandwidth re-
quirements are fulfilled. However, one of the assumptions
made by Liang and Nahrstedt was that the optimization al-
gorithm was executed in a single node and complete state
of the resource network is available to that node before ex-
ecution. In a large scale dynamic network this assumption
is hard to realize. If we assume that each node in the re-
source network is aware of the state of its immediate neigh-
borhood only, we need to compute the solution using a dis-
tributed algorithm such as ours.
In all of the abovementioned works, the operator nodes

are assumed to interconnected through an application de-
pendent overlay network using the Internet as underlay.
In [9], Gu and Nahrstedt presented a service overlay net-
work for multimedia stream processing, where they have
shown that dynamic re-allocation of the operator nodes
provides better compliance with the service contracts in
terms of service availability and response time. However,
none of the works have proposed the use of dedicated links
in conjunction with IP overlay network for improving ad-
herence to the service contracts.

6 Conclusion

In this paper, we investigated the resource management
problem with regard to data stream processing tasks. In
particular, we examined how a hybrid platform made up of
dedicated server resources and bi-modal network resources
(dedicated plus public) can be used for this class of ap-
plications. From the simulation based investigations, we
were able make several interesting observations. First, bi-
modal networks can improve dedicated resource utilization
(server plus dedicated network links). This means higher
return on investment can be obtained by engaging the bi-
modal network. Second, the overall system is able to admit
and process tasks at a higher rate compared to system con-
figurations that do not leverage a bi-modal network. Be-
cause the public network is engaged at zero or very low
cost, this improvement in throughput can be result in sig-
nificant economic gain for institutions that perform data
stream processing workloads. Third, the engagement of
bi-modal network comes at a slight overhead that adds low
delays in stream processing tasks. Compared to public-
only networks the delays provided by the bi-modal net-
work is almost negligible. Fourth, dynamic rescheduling
is essential to cope with varying network conditions – par-
ticularly in the public network. The dynamic reschedul-
ing algorithm switches the flows according to the recom-

puted priority values to achieve the best service level com-
pliances.
In summary, our study highlights the benefits of the bi-

modal architecture for compute- and network-intensive ap-
plications. Moreover, it provides simple distributed algo-
rithms that allows the effective utilization of such a plat-
form for data stream processing applications. Deploying
the distributed resource management framework in an ac-
tual prototype for data stream mapping is a possible future
work.

References

[1] S. Asaduzzaman. Managing Opportunistic and Dedicated
Resources in a Bi-modal Service Deployment Architecture.
PhD thesis, School of Computer Science, McGill Univer-
sity, Oct. 2007.

[2] S. Asaduzzaman and M. Maheswaran. Utilizing Unreliable
Public Resources for Higher Profit and Better SLACompli-
ance in Computing Utilities. Journal of Parallel and Dis-
tributed Computing, 66(6):796–806, 2006.

[3] S. Asaduzzaman and M. Maheswaran. Strategies to Cre-
ate Platforms for Differentiated Services from Dedicated
and Opportunistic Resources. Journal of Parallel and Dis-
tributed Computing, 67(10):1119–1134, 2007.

[4] S. Asaduzzaman and M. Maheswaran. Towards a de-
centralized algorithm for mapping network and compu-
tational resources for distributed data-flow computations.
In 21st Annual International Symposium on High Perfor-
mance Computing Systems and Applications, page 30, May
2007.

[5] A. Barabasi and R. Albert. Emergence of Scaling in Ran-
dom Networks. Science, 286(5439):509–512, 1999.

[6] R. Barr, Z. J. Haas, and R. van Renesse. JiST: An efficient
approach to simulation using virtual machines. Software:
Practice and Experience, 35(6):539–576, 2005.

[7] S. Das, S. Tewari, and L. Kleinrock. The Case for Servers in
a Peer-to-PeerWorld. In Proceedings of IEEE International
Conference on Communications (ICC ’06), pages 331–336,
Jun. 2006.

[8] X. Gu and K. Nahrstedt. Distributed multimedia service
composition with statistical QoS assurances. IEEE Trans.
Multimedia, 8(1):141–151, 2006.

[9] X. Gu, K. Nahrstedt, R. N. Chang, and C. Ward. Qos-
assured service composition in managed service overlay
networks. In 23rd International Conference on Distributed
Computing Systems, pages 194–203, May 2003.

[10] C. Kenyon and G. Cheliotis. Creating Services with Hard
Guarantees from Cycle Harvesting Resources. In 3rd
IEEE/ACM International Symposium on Cluster Comput-
ing and the Grid (CCGRID’03), May 2003.

[11] V. Kumar, B. F. Cooper, Z. Cai, G. Eisenhauer, and
K. Schwan. Resource aware distributed stream manage-
ment using dynamic overlays. In Proc. 25th IEEE ICDCS,
pages 783–792, Jun. 2005.

[12] J. Liang and K. Nahrstedt. Service composition for generic
service graphs. Multimedia Systems, 11(6):568–581, 2006.

[13] P. R. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopou-
los, M. Welsh, and M. I. Seltzer. Network-Aware Operator
Placement for Stream-Processing Systems. In Proceedings
of the 22nd International Conference on Data Engineering,
ICDE 2006, page 49, Apr. 2006.

[14] S. Seshadri, V. Kumar, B. F. Cooper, and L. Liu. Opti-
mizing Multiple Distributed Stream Queries Using Hierar-
chical Network Partitions. In Proceedings of 21th Inter-
national Parallel and Distributed Processing Symposium
(IPDPS 2007), pages 1–10, Mar. 2007.

[15] J. Wallerich and A. Feldmann. Capturing the variability of
internet flows across time. In 25th IEEE International Con-
ference on Computer Communications (INFOCOM-2006),
Apr. 2006.

[16] M. Wang, B. Li, and Z. Li. sFlow: Towards resource-
efficient and agile service federation in service overlay net-
works. In Proc. 24th IEEE ICDCS, pages 628–635, Mar.
2004.

