
GINI: A User-Level Toolkit for Creating Micro Internets for
Teaching & Learning Computer Networking

Muthucumaru Maheswaran∗, Alexis Malozemoff†, Daniel Ng†, Sheng Liao†, Song Gu†,
Balasubramaniyam Maniymaran†, Julie Raymond†, Reehan Shaikh†, Yuanyuan Gao†

Advanced Network Research Lab
School of Computer Science

McGill University
∗{firstname}.{lastname}@mcgill.ca †{firstname}.{lastname}@mail.mcgill.ca

ABSTRACT
GINI (GINI Is Not Internet) is an open-source toolkit for
creating virtual micro Internets for teaching and learning
computer networking. It provides lightweight virtual ele-
ments for machines, routers, switches, and wireless devices
that can be interconnected to create virtual networks. The
virtual elements run as unprivileged user-level processes. All
processes implementing a virtual network can run within a
single machine or can be distributed across a set of machines.
The GINI provides a user-friendly GUI-based tool for de-
signing, starting, inspecting, and stopping virtual network
topologies. This paper describes the different components
of GINI, briefly discusses ways of using the toolkit in a com-
puter networking course, and reports on user feedback on
an early (incomplete) version of the toolkit.

Categories and Subject Descriptors
K.3.1 [Computers and Education]: Computer Uses In
Education; D.2.0 [Software Engineering]: General

General Terms
Design, Experimentation, Human Factors

Keywords
computer networking, education, training, emulation, net-
working hardware, virtualization

1. INTRODUCTION
It is widely accepted that experimentation is the most

effective way of learning computer networking. Several ap-
proaches [8, 12, 13, 16, 19, 20] have been proposed to ex-
periment with computer networks and they can be grouped
into two major classes: (i) dedicated laboratory-based ap-
proaches and (ii) discrete-event simulation-based approaches.
While dedicated laboratories faithfully mimic portions of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’09, March 3–7, 2009, Chattanooga, Tennessee, USA.
Copyright 2009 ACM 978-1-60558-183-5/09/03 ...$5.00.

Internet, they are costly, need continuous maintenance, in-
flexible, and provide limited capacity. Although many dis-
crete event simulation based toolkit have been developed
for computer networking, they are ideally suited for evalu-
ating and studying performance trade-offs and less suited for
learning the intricacies of networking. This is because simu-
lation frameworks by design abstract away low level details
that are often important in the learning process and do not
provide the same operational model as the real network.

GINI (GINI Is Not Internet) is an open-source toolkit de-
signed and implemented by the authors that provides an en-
tirely software-based approach containing many of the fea-
tures found in more expensive laboratory-based solutions.
The GINI provides lightweight but IP (Internet protocol)
compatible virtual elements for machines, routers, switches,
wireless access points, and mobile devices. The virtual ele-
ments can be interconnected to create virtual networks for
experimentation purposes. The GINI provides a tool with a
GUI (graphical user interface) called gBuilder (see Figure 1)
to design, start, inspect, and stop virtual networks. The pro-
cesses that are created as part of the elements of a virtual
network such as virtual machines can all run within a single
machine or be distributed across multiple machines. The
GINI is designed such that it can install and run without
special privileges (e.g., super user access). This allows stu-
dents to use GINI toolkit on machines provided in university
computing centers or on their personal computers.

One of GINI’s strengths is its realism. One of the cen-
tral components of GINI is the virtual element representing
a machine. A custom version of user-mode Linux is used
for implementing the virtual machine. This allows Internet-
based applications such as email, web servers/clients, and
file transfer to run unmodified on GINI. Further, it means
the skills acquired through interactions with GINI is applica-
ble in real-world situations. GINI is also quite extensible. It
provides a framework that can be enhanced by the addition
of new networking protocols and elements. For instance,
functionality can be added to the virtual routers provided
with GINI to support multicast protocols. Similarly, new
network elements such as IP version 6 to IP version 4 trans-
lators can be added by modifying new elements or writing
them from scratch.

Another benefit of GINI over similar tools is its simplic-
ity. If an industrial strength IP router (e.g., one provided
inside Linux kernel) is used for experiments, the sheer com-
plexity of the component is going overwhelm the students
and digesting the software architecture to modify or en-

hance the component is simply impossible within a single
semester. With GINI, students are provided with a very
lightweight and simple router, easy enough to fully under-
stand and modify over the course of a semester. This is one
of the strengths of GINI: it is rare for students to delve into
enhancing a router in an introduction to computer network-
ing course, but GINI makes it possible.

It is often helpful for students learning computer network-
ing to experiment and observe traffic. Due to security con-
cerns, this is not possible with live Internet even under lab
settings. GINI allows students to create their own virtual
network that can run standard applications and can be ob-
served using standard packet visualization tools. Designing
new protocols and networking elements is another focus of
computer networking, but one that is often taught in theory
and not practice. GINI provides a platform in which new
devices and protocols can be developed and tested without
fear of security or other issues.

The estimated user familiarization time for learning GINI
and all of its components is 2-3 weeks, which is only a small
portion of a semester, leaving enough time for more in depth
learning. Through gBuilder, GINI provides a user-friendly
interface that automates many tedious tasks but provides
sufficient feedback on the state of the network. Experimen-
tal versions of GINI have been used in the Computer Net-
works course at McGill since 2004. The feedback from the
students have been used improve various aspects of GINI. It
is currently available for public use [1].

Section 2 of this paper describes each element in GINI to-
gether with the steps to create a virtual network. Section 3
discusses the implementation details of the various compo-
nents. Related work is discussed and compared with GINI in
Section 5. Section 4 illustrates past and future development
of GINI.

2. BUILDING NETWORKS WITH GINI
The gBuilder is the main interface used by the users to

interact with GINI. The The gBuilder is simple enough such
that a novice user can become familiar and sufficiently pro-
ductive in very little time while an experienced user can
design complex topologies with ease. As shown in Figure 1,
the gBuilder includes a palette of network elements such as
switches, routers, mobile devices, wireless access points, and
wired hosts the user could use in composing the virtual net-
work. The selects the desired devices and places them on
the canvas and interconnects them using sub-nets and con-
nectors. Currently, work is underway to add hubs, bridges,
firewalls, and custom-networking devices to the gBuilder’s
device palette.

The end machines are represented by custom-configured
user-mode Linux (UML) [11] instances. The UML is a facil-
ity to run an instance of Linux as an application on a Linux
machine (like using a virtual machine without installing any
special software on the host machine). Several previous ef-
forts have used UML for teaching system adminstration and
networking concepts [9, 14]. Again mobile devices are rep-
resented as UML instances, however, the wireless channel
is emulated by server called gwCenter that was developed
as part of the GINI project. In addition to emulating the
wireless channel, the gwCenter acts as an access point and
wireless router.

Once the topology of a network is set, a network element’s
properties such as IP address, subnet mask, MAC address

can be set using gBuilder (see Figure 2 for one example).
For complex and relatively large topologies, manually set-
ting up network elements’ parameters and routes can be a
tedious process. To alleviate this tedium, GINI provides an
auto-generate option so that users only have to input subnet
addresses, while everything else is generated at by gBuilder.

Once the network is configured, the user must compile
the network. If the auto-generate option is set, the compila-
tion process generates missing parameters, verifies that the
specification complies with the rules built into gBuilder, and
generates an XML topology file as output. The output file
is used by gLoader to instantiate the appropriate network
elements. The separation of gLoader from gBuilder allows
an advanced user to by pass the GUI and use a command
line tool to start and stop instances of virtual networks. The
gBuilder has a built-in task management facility called the
task manager which allows the user to inspect and kill pro-
cesses that implement the different network elements (see
Figure 3).

GINI provides several ways to visualize the performance
of a running virtual network. For example, gRouter conti-
nously outputs time averaged queue sizes and packet through-
put rates that are graphed by the gBuilder. Similarly, the
gwCenter provides the packet throughput for wireless chan-
nels that are managed by it. When mobile devices are con-
nected to through the gwCenter, the packet throughput in-
formation is displayed in a pop-up windows besides the mo-
bile device as shown in Figure 4. The movement of a mobile
device can be simulated by moving the icon of the corre-
sponding mobile device on the canvas.

Figure 1: Building a simple network of two machines
connected by a switch using gBuilder.

3. IMPLEMENTATION DETAILS
The virtual elements of GINI that correspond to the ma-

chines, switches, routers, wireless access points, and mo-
bile devices are coded in C. The glue infrastructure such as
gBuilder, task manager, and gLoader are coded in Python.
The entire code base is open source, licensed under the GPL.
This provides students the ability to read and learn from the
source code.

As discussed above, gBuilder is the main interface between

Figure 2: Configuring the subnet properties.

Figure 3: The task manager for killing selected ele-
ments of a network.

Figure 4: Statistics (e.g., packet throughput) of a
mobile node as it is moved in space.

the user and GINI. gBuilder handles saving and compiling
the topology into an XML file, which can be parsed by
gLoader to run the actual components and configuration as a
whole. After gLoader launches the topology, gBuilder can be
used as a tool for managing the running components. With
a simple double-click of the mouse, gBuilder provides com-
mand shells for command-driven devices, such as machines,
routers and wireless access points.

The attachable command shells are supported by an open-
source program called screen [2]. The screen can handle
multiple virtual terminals which can be attached or detached
and can receive signals from the physical terminal. This
program also provides a listing of the running screens and
their state, which is handled by gBuilder through the task
manager.

The management of host machines and mobiles devices is
controlled by a program called uml mconsole, provided by
the UML project [3]. It is responsible for sending restart and
shutdown signals to the UML devices. The other devices’
(router, switch, etc.) restart and shutdown sequences are
handled directly by gBuilder.

GINI uses a custom built software-based router called
gRouter. While simple enough (around 6000 lines of code) to
allow a student to fully understand the code over a semester,
gRouter also provides full compliance with the Linux TCP/IP
stack. The simplicity of the router allows projects to be as-
signed in which students can modify and extend the router’s
functionality.

Another benefit of gRouter is the flexible approach taken
in developing the packet scheduling algorithm. It is easy for
students to develop new algorithms and test them using fea-
tures provided within gRouter and gBuilder. This facilitates
exploration into different packet scheduling algorithms, an
aspect that significantly impacts the performance delivered
to the eventual traffic streams.

gRouter also includes a facility for traffic to be classified
by incoming IP address, outgoing IP address, incoming port,
outgoing port, and protocol. Once classified, the scheduling
algorithms described above could be used to schedule the
traffic, and different queuing disciplines, such as tail-drop
and RED, can be assigned to manage the different queues.

The gRouter allows performance visualization through a
real-time graphing tool provided by gBuilder. The pack-
ets flowing through gRouter can be visualized by connect-
ing a Wireshark program through the plugin interface to
the gRouter. The gBuilder provides a convenient drop-down
menu for performing this connection.

GINI also includes basic wireless support, which emulates
an ad-hoc wireless local area network [15]. This interacts
with the mobile device components provided by GINI. The
central controlling instance is called the wireless GINI cen-
ter (gwCenter) which is also used as the wireless access point
(WAP) for GINI. Mobiles connected to the WAP are con-
sidered nodes for gwCenter, where each node is identified
through the MAC addresses provided in gBuilder. On top
of efficient medium access control, gwCenter provides config-
uration for propagation channels, concrete frame corruption
and node mobility. gwCenter has a command line interface
which accepts configurations based on each of these elements
for each node. To simplify this process, the configurations
can be done from gBuilder, which sends the corresponding
commands to gwCenter.

One of the strengths of GINI is the use of a custom Linux

distribution, called GiniLinux. By using Linux-from-scratch
[4] as the base of the distribution, we have been able to cre-
ate a lean (80 MB in size) and extremely fast (5 seconds to
startup and shutdown on average) operating system with all
the necessary tools for network experimentation. One of the
main benefits of this small size is the ability to launch multi-
ple instances of GiniLinux without hogging all the memory
on a computer. To reduce the overall size of the distribution
we have forgone including a graphical user interface. While
a certain level (the knowledge to execute relevant commands
from a command shell) of Linux knowledge is necessary to
use GiniLinux, most students have past experience using
Linux or Unix-like operating systems, and thus learning to
use GiniLinux is not a great challenge.

4. USER FEEDBACK ON EARLY VERSIONS
Figure 5 shows the results of a survey taken in the com-

puter networking class at the end of Fall 2004. Although
the toolkit was very primitive at that time, the results indi-
cate that the students felt that GINI provides better insights
into networking. Current version of the GINI toolkit is much
advanced. It can support experimentations on a variety of
different aspects of computer networks.

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1  2  3  4  5 

Figure 5: The results of a user study on GINI.
The blue bar shows the response for the question
“does GINI give additional insights into how In-
ternet works?” and the red bar the response for
the question “would you like to see GINI in future
courses?.” A strong yes is 5 and a strong no is 1.

5. RELATED WORK
As mentioned previously, systems related to GINI can be

grouped into two classes: dedicated laboratories and simu-
lators. The networking community has put significant effort
in both classes and built several examples.

Computer networking research tends to focus heavily on
simulators. This is because simulators provide an easy way
of exercising specific aspects of networks for quickly answer-
ing the research questions [5, 17, 18]. Over the years, the
familiarity of network simulators in university environments
have made them attractive teaching tools for computer net-
work courses [7]. GINI, on the other hand, is built first and
foremost for educational purposes, specifically for teaching
undergraduates or first-year graduates the basics of com-
puter networking. Thus, GINI is simpler to understand than
most of the tools mentioned above, an important require-
ment for students who are exposed to computer networking

for the first time. Further, GINI is able to capture lot of
low-level details and remain almost same as an actual im-
plementation above the physical layer of the network. Due
to the faithful reproduction of actual Internet conditions,
students are likely to find the knowledge gained with GINI
more valuable in real-world scenarios. Another problem with
simulations from a teaching point-of-view is the difficulty of
setting up meaningful simulation scenarios. For effective
exposition of reality, simulators need to be fed with the cor-
rect parameter values which require advance knowledge of
the real world and the simulation model. While this kind
of knowledge can be assumed among research students, it is
hardly true for non-research students.

There are numerous hardware lab-based approaches. Due
to lack of space only two are mentioned. One of the recent
approaches is Open Network Laboratory (ONL) [10]. While
ONL is ideal for certain experiments, it is a dedicated labo-
ratory and not suitable for large-scale adoption. Several ap-
proaches based on dedicated hardware are described in [12],
including the use of virtual machines, the path taken by
GINI. Although virtual machines are used in [12] for the
end systems, dedicated routers and switches are used for
other elements of the network. In contrast, GINI provides
an all-software implementation.

Kneale and Box [13] raise many interesting issues with
regard to current approaches for teaching computer net-
working, including cost issues and lack of access time to
labs. They provide a system called Velnet based on a vir-
tual machines-based approach to computer networking ex-
periments. Unfortunately, Velnet uses the routing function-
ality embedded in Linux kernels instead of developing a
lightweight router, leaving the students with a steep learn-
ing curve if they intend to delve into the router and add new
functionality.

The Stanford Virtual Router [6] is a project designed to
help students in router education. It provides a Virtual
Router server that communicates with client routers, run by
the students. The clients only see their own traffic, whereas
the server manages the traffic of all the clients. While the
Stanford Virtual Router provides a better alternative than
the solutions that use Linux as the router, the GINI goes
even further. By providing a distributed network of routers,
the GINI provides an opportunity where GINI routers can
be mapped onto machines far apart on the Internet to sim-
ulate wide-area linkages.

Two books on computer networking which take opposite
approaches to network education are Comer’s Hands-On
Networking with Internet Technologies [8] and Matthews’
Computer Networks: Internet Protocols in Action [16]. Comer
relies on a dedicated laboratory for network experimenta-
tion. The book gives experiments that can be created and
tested using the suggested laboratory. The use of a lab raises
the issues of cost and access time for students, which in a
large class could be too short to successfully learn the ma-
terial.

Matthews’ book, Computer Networks: Internet Protocols
in Action [16], uses the novel idea of teaching networking by
providing packet traces for many different networking situ-
ations, including SMTP, BGP, and RIP traces, to name a
few. While definitely an interesting and noteworthy book,
Matthews’ approach fails to give students a hands-on ap-
proach, in the sense that they are unable to make changes to
various networking settings or code and see the results. GINI

GINI Labs Simulators
Dedicated Hardware •
Free • •
Hands-on • • •
Level of Abstraction Low None High
Open Source • •
Runs Locally • •
Software Complexity Low High High

Table 1: Comparison of GINI with other popular
networking education methods.

contains many of the benefits of Matthews’ book without the
negatives. By providing a Wireshark (previously known as
Ethereal – an open-source industry standard packet visual-
izing tool) plugin to the router, students are able to visualize
the packets as they flow through the virtual routers. Because
everything is open source and accessible, students are able
to alter the router and/or application code and instantly see
the results through the Wireshark plugin.

Table 1 sums up the information described above by com-
paring GINI to the two most popular methods of hands-on
networking education: dedicated laboratories and simula-
tors.

6. CONCLUSIONS
GINI provides an all-software toolkit that can be deployed

on a typical Linux machine to create an experimentation
platform suitable for teaching and learning computer net-
works at universities. Although undergraduates and junior
graduate students are the intended audiences of GINI, it is
conceivable that GINI might be interesting to people want-
ing to learn computer networks for fun. One of the unique
aspects of GINI is the easy entry it provides into the world of
network experimentation. By removing the requirements for
dedicated laboratories and advanced domain-specific knowl-
edge required by simulators, GINI effectively lowers the bar-
rier for entry into the fascinating world of network experi-
mentations.

The GINI project began in 2004. Many experimental
versions of the toolkit were used in computer networking
courses at McGill. A highly stable and usable Version 1.0
of the toolkit can be found at http://www.cs.mcgill.ca/

~anrl/gini.

7. REFERENCES
[1] GINI Project. http://www.cs.mcgill.ca/ anrl/gini/.

[2] GNU Screen. http://www.gnu.org/software/screen/.

[3] User Mode Linux.
http://user-mode-linux.sourceforge.net/.

[4] G. Beekmans. Linux from Scratch. IUniverse.com,
Inc., 2000.

[5] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann,
A. Helmy, P. Huang, S. McCanne, K. Varadhan,
Y. Xu, and H. Yu. Advances in Network Simulation.
Computer, 33:59–67, May 2000.

[6] M. Casado, V. Vijayaraghavan, G. Appenzeller, and
N. McKeown. The Stanford Virtual Router. ACM
SIGCOMM Computer Communication Review,
32:26–26, July 2002.

[7] X. Chang. Network simulations with OPNET. In
Simulation Conference Proceedings, volume 1, pages
307–314, 1999.

[8] D. Comer. Hands-on Networking with Internet
Technologies. Prentice-Hall, 2002.

[9] R. Davoli. Teaching operating systems administration
with user mode linux. In Proceedings of the 9th annual
SIGCSE conference on Innovation and technology in
computer science education, pages 112–116. ACM New
York, NY, USA, 2004.

[10] J. DeHart, F. Kuhns, J. Parwatikar, J. Turner,
C. Wiseman, and K. Wong. The open network
laboratory. In Proceedings of ACM SIGCSE, 2006.

[11] J. Dike. User-mode Linux. Proceedings of the 5th
conference on 5th Annual Linux Showcase &
Conference-Volume 5 table of contents, pages 2–2,
2001.

[12] J. Gerdes and S. Tilley. A conceptual overview of the
virtual networking laboratory. In SIGITE ’07:
Proceedings of the 8th ACM SIGITE Conference on
Information Technology Education, pages 75–82.
ACM, 2007.

[13] B. Kneale and I. Box. A Virtual Learning
Environment for Real-World Networking. Information
Science, 71, 2003.

[14] A. Krap. Setting up a virtual network Laboratory
with User-Mode Linux. In Proceedings of the 4th
International System Administration and Network
Engineering Conference, 2004.

[15] S. Liao. Wireless GINI: An Emulator for Ad-hoc
Wireless Local Area Networks. Masters Thesis, 2005.

[16] J. Matthews. Computer Networks: Internet Protocols
in Action. John Wiley & Sons, 2005.

[17] S. McCanne and S. Floyd. ns Network Simulator,
1995.

[18] G. Riley. The Georgia Tech Network Simulator. In
Proceedings of the ACM SIGCOMM workshop on
Models, methods and tools for reproducible network
research, pages 5–12. ACM New York, NY, USA, 2003.

[19] J. Theunis, B. Van den Broeck, P. Leys, J. Potemans,
E. Van Lil, and A. Van de Capelle. OPNET in
Advanced Networking Education. In OPNETWORK
2002, August 2002.

[20] J. Wang, B. Peng, and W. Jia. Design and
Implementation of Virtual Computer Network Lab
Based on NS2 in the Internet. In Advances in
Web-Based Learning - ICWL 2004, pages 346–353,
2004.

